Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
medrxiv; 2020.
Preprint en Inglés | medRxiv | ID: ppzbmed-10.1101.2020.12.21.20248645

RESUMEN

Aims Renin–angiotensin system blockers such as angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs) may increase the risk of adverse outcomes in COVID-19. In this study, the relationships between ACEI/ARB use and COVID-19 related mortality were examined. Methods Consecutive patients diagnosed with COVID-19 by RT-PCR at the Hong Kong Hospital Authority between 1 st January and 28 th July 2020 were included. Results This study included 2774 patients. The mortality rate of the COVID-19 positive group was 1.5% (n=42). Those who died had a higher median age (82.3[76.5-89.5] vs. 42.9[28.2-59.5] years old; P<0.0001), more likely to have baseline comorbidities of cardiovascular disease, diabetes mellitus, hypertension, and chronic kidney disease (P<0.0001). They were more frequently prescribed ACEI/ARBs at baseline, and steroids, lopinavir/ritonavir, ribavirin and hydroxychloroquine during admission (P<0.0001). They also had a higher white cell count, higher neutrophil count, lower platelet count, prolonged prothrombin time and activated partial thromboplastin time, higher D-dimer, troponin, lactate dehydrogenase, creatinine, alanine transaminase, aspartate transaminase and alkaline phosphatase (P<0.0001). Multivariate Cox regression showed that age, cardiovascular disease, renal disease, diabetes mellitus, the use of ACEIs/ARBs and diuretics, and various laboratory tests remained significant predictors of mortality. Conclusions We report that an association between ACEIs/ARBs with COVID-19 related mortality even after adjusting for cardiovascular and other comorbidities, as well as medication use. Patients with greater comorbidity burden and laboratory markers reflecting deranged clotting, renal and liver function, and increased tissue inflammation, and ACEI/ARB use have a higher mortality risk. Key Points We report that an association between ACEIs/ARBs with COVID-19 related mortality even after adjusting for cardiovascular and other comorbidities, as well as medication use. Patients with greater comorbidity burden and laboratory markers reflecting deranged clotting, renal and liver function, and increased tissue inflammation, and ACEI/ARB use have a higher mortality risk.


Asunto(s)
Enfermedades Cardiovasculares , Diabetes Mellitus , Enfermedades Renales , Agnosia , COVID-19
2.
medrxiv; 2020.
Preprint en Inglés | medRxiv | ID: ppzbmed-10.1101.2020.12.21.20248646

RESUMEN

Background: Diabetes mellitus-related complications adversely affect the quality of life. Better risk-stratified care through mining of sequential complication patterns is needed to enable early detection and prevention. Methods: Univariable and multivariate logistic regression was used to identify significant variables that can predict mortality. A sequence analysis method termed Prefixspan was applied to identify the most common couple, triple, quadruple, quintuple and sextuple sequential complication patterns in the directed comorbidity pathology network. A knowledge enhanced CPT+ (KCPT+) sequence prediction model is developed to predict the next possible outcome along the progression trajectories of diabetes-related complications. Findings: A total of 14,144 diabetic patients (51% males) were included. Acute myocardial infarction (AMI) without known ischaemic heart disease (IHD) (odds ratio [OR]: 2.8, 95% CI: [2.3, 3.4]), peripheral vascular disease (OR: 2.3, 95% CI: [1.9, 2.8]), dementia (OR: 2.1, 95% CI: [1.8, 2.4]), and IHD with AMI (OR: 2.4, 95% CI: [2.1, 2.6]) are the most important multivariate predictors of mortality. KCPT+ shows high accuracy in predicting mortality (F1 score 0.90, ACU 0.88), osteoporosis (F1 score 0.86, AUC 0.82), ophthalmological complications (F1 score 0.82, AUC 0.82), IHD with AMI (F1 score 0.81, AUC 0.85) and neurological complications (F1 score 0.81, AUC 0.83) with a particular prior complication sequence. Interpretation: Sequence analysis identifies the most common pattern characteristics of disease-related complications efficiently. The proposed sequence prediction model is accurate and enables clinicians to diagnose the next complication earlier, provide better risk-stratified care, and devise efficient treatment strategies for diabetes mellitus patients.


Asunto(s)
Isquemia Miocárdica , Infarto del Miocardio , Demencia , Diabetes Mellitus , Osteoporosis , Enfermedades del Sistema Nervioso Central , Enfermedades Vasculares Periféricas
3.
medrxiv; 2020.
Preprint en Inglés | medRxiv | ID: ppzbmed-10.1101.2020.10.21.20217380

RESUMEN

Background: Recent studies have reported numerous significant predictors for adverse outcomes in COVID-19 disease. However, there have been few simple clinical risk score for prompt risk stratification. The objective is to develop a simple risk score for severe COVID-19 disease using territory-wide healthcare data based on simple clinical and laboratory variables. Methods: Consecutive patients admitted to Hong Kong public hospitals between 1st January and 22nd August 2020 diagnosed with COVID-19, as confirmed by RT-PCR, were included. The primary outcome was composite intensive care unit admission, need for intubation or death with follow-up until 8th September 2020. Results: COVID-19 testing was performed in 237493 patients and 4445 patients (median age 44.8 years old, 95% CI: [28.9, 60.8]); 50% male) were tested positive. Of these, 212 patients (4.8%) met the primary outcome. A risk score including the following components was derived from Cox regression: gender, age, hypertension, stroke, diabetes mellitus, ischemic heart disease/heart failure, respiratory disease, renal disease, increases in neutrophil count, monocyte count, sodium, potassium, urea, alanine transaminase, alkaline phosphatase, high sensitive troponin-I, prothrombin time, activated partial thromboplastin time, D-dimer and C-reactive protein, as well as decreases in lymphocyte count, base excess and bicarbonate levels. The model based on test results taken on the day of admission demonstrated an excellent predictive value. Incorporation of test results on successive time points did not further improve risk prediction. Conclusions: A simple clinical score accurately predicted severe COVID-19 disease, even without including symptoms, blood pressure or oxygen status on presentation, or chest radiograph results.


Asunto(s)
Insuficiencia Cardíaca , Enfermedades Respiratorias , Diabetes Mellitus , Isquemia , Enfermedades Renales , Hipertensión , COVID-19 , Accidente Cerebrovascular , Cardiopatías
4.
medrxiv; 2020.
Preprint en Inglés | medRxiv | ID: ppzbmed-10.1101.2020.06.30.20143651

RESUMEN

Background: The coronavirus disease 2019 (COVID-19) has become a pandemic, placing significant burdens on the healthcare systems. In this study, we tested the hypothesis that a machine learning approach incorporating hidden nonlinear interactions can improve prediction for Intensive care unit (ICU) admission. Methods: Consecutive patients admitted to public hospitals between 1st January and 24th May 2020 in Hong Kong with COVID-19 diagnosed by RT-PCR were included. The primary endpoint was ICU admission. Results: This study included 1043 patients (median age 35 (IQR: 32-37; 54% male). Nineteen patients were admitted to ICU (median hospital length of stay (LOS): 30 days, median ICU LOS: 16 days). ICU patients were more likely to be prescribed angiotensin converting enzyme inhibitors/angiotensin receptor blockers, anti-retroviral drugs lopinavir/ritonavir and remdesivir, ribavirin, steroids, interferon-beta and hydroxychloroquine. Significant predictors of ICU admission were older age, male sex, prior coronary artery disease, respiratory diseases, diabetes, hypertension and chronic kidney disease, and activated partial thromboplastin time, red cell count, white cell count, albumin and serum sodium. A tree-based machine learning model identified most informative characteristics and hidden interactions that can predict ICU admission. These were: low red cells with 1) male, 2) older age, 3) low albumin, 4) low sodium or 5) prolonged APTT. A five-fold cross validation confirms superior performance of this model over baseline models including XGBoost, LightGBM, random forests, and multivariate logistic regression. Conclusions: A machine learning model including baseline risk factors and their hidden interactions can accurately predict ICU admission in COVID-19.


Asunto(s)
Enfermedades Respiratorias , Insuficiencia Renal Crónica , Diabetes Mellitus , Hipertensión , Enfermedad de la Arteria Coronaria , COVID-19 , Esquistosomiasis mansoni
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA